Go 实现简单的 Set


需求
对于 Set 类型的数据结构,其实本质上跟 List 没什么多大的区别。无非是 Set 不能含有重复的 Item 的特性,Set 有初始化、Add、Clear、Remove、Contains 等操作。

Go中Map的数据结构,Key是不允许重复的:

m := map[string]string{
    "1": "one",
    "2": "two",
    "1": "one",
    "3": "three",
}
fmt.Println(m)

程序会直接报错,提示重复 Key 值,这样就非常符合 Set 的特性需求了。

定义
前面分析出 Set 的 Value 为固定的值,用一个常量替代即可。但是笔者分析的实现源码,用的是一个空结构体来实现的,如下所示:

// 空结构体
var Exists = struct{}{}
// Set is the main interface
type Set struct {
    // struct 为结构体类型的变量
    m map[interface{}]struct{}
}


阅读全文

Go 语言小细节(四)


map 的容量
你可以在 map 创建时指定它的容量,但你无法在 map 上使用 cap() 函数。

package main
func main() {  
    m := make(map[string]int,99)
    cap(m)
}

匿名函数作用域陷阱

import (
    "fmt"
)

func main(){
    var msgs []func()
    array := []string{
        "1", "2", "3", "4",
    }
    for _, e := range array{
        msgs = append(msgs, func(){
            fmt.Println(e)
        })
    }
    for _, v := range msgs{
        v()
    }
}

阅读全文

Go 语言小细节(三)


在 for 语句的闭包中使用迭代变量会有问题
在 for 迭代过程中,迭代变量会一直保留,只是每次迭代值不一样。因此在 for 循环中在闭包里直接引用迭代变量,在执行时直接取迭代变量的值,而不是闭包所在迭代的变量值。如果闭包要取所在迭代变量的值,就需要 for 中定义一个变量来保存所在迭代的值,或者通过闭包函数传参。

package main

import (  
    "fmt"
    "time"
)

func forState1(){
    data := []string{"one","two","three"}

    for _,v := range data {
        go func() {
            fmt.Println(v)
        }()
    }
    time.Sleep(3 * time.Second)
    // three, three, three

    for _,v := range data {
        vcopy := v
        // 使用临时变量
        go func() {
            fmt.Println(vcopy)
        }()
    }
    time.Sleep(3 * time.Second)
    // one, two, three

    for _,v := range data {
        go func(in string) {
            fmt.Println(in)
        }(v)
    }
    time.Sleep(3 * time.Second)
    // one, two, three
}

func main() {  
    forState1()
}

阅读全文

Go 语言小细节(二)


数组用于函数传参时是值复制
方法或函数调用时,传入参数都是值复制,跟赋值一致,除非是 map、slice、channel、指针类型这些特殊类型是引用传递。

x := [3]int{1,2,3}

数组在函数中传参是值复制

func(arr [3]int) {
    arr[0] = 7
    fmt.Println(arr)
    // [7 2 3]
}(x)
fmt.Println(x)
// [1 2 3]

使用数组指针实现引用传参

func(arr *[3]int) {
    (*arr)[0] = 7
    fmt.Println(arr)
    // &[7 2 3]
}(&x)
fmt.Println(x)
// [7 2 3]

阅读全文

Go 语言小细节(一)


多个 defer 出现的时候,多个 defer 之间按照 LIFO(后进先出)的顺序执行

package main
import "fmt"
func main(){
    defer func(){
        fmt.Println("1")
    }()
    defer func(){
        fmt.Println("2")
    }()
    defer func(){
        fmt.Println("3")
    }()
}

对应的输出是:

3
2
1

阅读全文

Go json 反序列化成 interface{} 对 Number 的处理


json 的规范中,对于数字类型,并不区分是整型还是浮点型。
go json number.gif
对于如下 json 文本:

{
    "name": "ethancai",
    "fansCount": 9223372036854775807
}

如果反序列化的时候指定明确的结构体和变量类型

package main

import (
    "encoding/json"
    "fmt"
)

type User struct {
    Name      string
    FansCount int64
}

func main() {
    const jsonStream = `{"name":"ethancai", "fansCount": 9223372036854775807}`
    var user User  // 类型为User
    err := json.Unmarshal([]byte(jsonStream), &user)
    if err != nil {
        fmt.Println("error:", err)
    }
    fmt.Printf("%+v \n", user)
}

Output:

{Name:ethancai FansCount:9223372036854775807}

如果反序列化不指定结构体类型或者变量类型,则 json 中的数字类型,默认被反序列化成 float64 类型:

package main

import (
    "encoding/json"
    "fmt"
    "reflect"
)

func main() {
    const jsonStream = `{"name":"ethancai", "fansCount": 9223372036854775807}`
    // 不指定反序列化的类型
    var user interface{}
    err := json.Unmarshal([]byte(jsonStream), &user)
    if err != nil {
        fmt.Println("error:", err)
    }
    m := user.(map[string]interface{})
    fansCount := m["fansCount"]
    fmt.Printf("%+v \n", reflect.TypeOf(fansCount).Name())
    fmt.Printf("%+v \n", fansCount.(float64))
}

Output:

float64
9.223372036854776e+18

另一个程序

package main

import (
    "encoding/json"
    "fmt"
)

type User struct {
    Name      string
    // 不指定FansCount变量的类型
    FansCount interface{}
}

func main() {
    const jsonStream = `{"name":"ethancai", "fansCount": 9223372036854775807}`
    var user User
    err := json.Unmarshal([]byte(jsonStream), &user)
    if err != nil {
        fmt.Println("error:", err)
    }
    fmt.Printf("%+v \n", user)
}

Output:

{Name:ethancai FansCount:9.223372036854776e+18}

从上面的程序可以发现,如果 fansCount 精度比较高,反序列化成 float64 类型的数值时存在丢失精度的问题。

package main

import (
    "encoding/json"
    "fmt"
    "reflect"
    "strings"
)

func main() {
    const jsonStream = `{"name":"ethancai", "fansCount": 9223372036854775807}`
    decoder := json.NewDecoder(strings.NewReader(jsonStream))
    // UseNumber causes the Decoder to unmarshal a number into an interface{} as a Number instead of as a float64.
    decoder.UseNumber()
    var user interface{}
    if err := decoder.Decode(&user); err != nil {
        fmt.Println("error:", err)
        return
    }
    m := user.(map[string]interface{})
    fansCount := m["fansCount"]
    fmt.Printf("%+v \n", reflect.TypeOf(fansCount).PkgPath() + "." + reflect.TypeOf(fansCount).Name())
    v, err := fansCount.(json.Number).Int64()
    if err != nil {
        fmt.Println("error:", err)
        return
    }
    fmt.Printf("%+v \n", v)
}

Output:

encoding/json.Number
9223372036854775807

上面的程序,使用了 func (*Decoder) UseNumber 方法告诉反序列化 json 的数字类型的时候,不要直接转换成 float64,而是转换成 json.Number 类型。
json.Number内部实现机制:

// A Number represents a JSON number literal.
type Number string

// String returns the literal text of the number.
func (n Number) String() string { return string(n) }

// Float64 returns the number as a float64.
func (n Number) Float64() (float64, error) {
    return strconv.ParseFloat(string(n), 64)
}

// Int64 returns the number as an int64.
func (n Number) Int64() (int64, error) {
    return strconv.ParseInt(string(n), 10, 64)
}

json.Number 本质是字符串,反序列化的时候将 json 的数值先转成 json.Number,其实是一种延迟处理的手段,待后续逻辑需要时候,再把 json.Number 转成 float64 或者 int64。

阅读全文

Go json 库 json-iterator


高效json库.png

直接替换
json.Marshal 替为 jsoniter.Marshal

type ColorGroup struct {
    ID     int
    Name   string
    Colors []string
}
group := ColorGroup{
    ID:     1,
    Name:   "Reds",
    Colors: []string{"Crimson", "Red", "Ruby", "Maroon"},
}
b, err := jsoniter.Marshal(group)

阅读全文

Go 处理 json


json to struct

import (
    "testing"
    "encoding/json"
)

// 这里对应的 N 和 A 不能为小写,首字母必须为大写,这样才可对外提供访问,具体 json 匹配是通过后面的 tag 标签进行匹配的,与 N 和 A 没有关系
// tag 标签中 json 后面跟着的是字段名称,都是字符串类型,要求必须加上双引号
type Person struct {
    N string     `json:"name"`
    A int        `json:"age"`
}

func TestStruct2Json(t *testing.T) {
    jsonStr := `{
        "name":"liangyongxing",
        "age":12
    }`
    var person Person
    json.Unmarshal([]byte(jsonStr), &person)
    t.Log(person)
}

阅读全文

Go map struct 相互转换


map to struct

import (
    "testing"
    "github.com/goinggo/mapstructure"
)

func TestMap2Struct(t *testing.T) {
    mapInstance := make(map[string]interface{})
    mapInstance["Name"] = "liang637210"
    mapInstance["Age"] = 28
    var person Person
    // 将 map 转换为指定的结构体
    if err := mapstructure.Decode(mapInstance, &person); err != nil {
        t.Fatal(err)
    }
    t.Logf("map2struct后得到的struct内容为:%v", person)
}

struct to map

import (
    "testing"
    "reflect"
)

type User struct {
    Id        int    `json:"id"`
    Username    string    `json:"username"`
    Password    string    `json:"password"`
}

func Struct2Map(obj interface{}) map[string]interface{} {
    t := reflect.TypeOf(obj)
    v := reflect.ValueOf(obj)
    var data = make(map[string]interface{})
    for i := 0; i < t.NumField(); i++ {
        data[t.Field(i).Name] = v.Field(i).Interface()
    }
    return data
}

func TestStruct2Map(t *testing.T) {
    user := User{5, "zhangsan", "password"}
    data := Struct2Map(user)
    t.Logf("struct2map得到的map内容为:%v", data)
}
阅读全文